Developing a High Perfor mance Software Library with MPI
and CUDA for Matrix Computations

Bogdan Oancea'™ Tudorel Andrei?

! Nicolae Titulescu” University of Bucharest, e-maibgdanoancea@univnt.ro, Cale#cifesti, nr. 185, sector 4, Bucust, Romania
°The Bucharest Academy of Economic Studies, e-madreitudorel@yahoo.com, Bucytie Romania

Abstract

Nowadays, the paradigm of parallel computing israfiag. CUDA is now a popular programming model deneral
purpose computations on GPUs and a great numbapplications were ported to CUDA obtaining speedofosrders of
magnitude comparing to optimized CPU implementatibtybrid approaches that combine the messagenpesddel with
the shared memory model for parallel computingasslution for very large applications. We consatka heterogeneous
cluster that combines the CPU and GPU computatissisg MPI and CUDA for developing a high performardinear
algebra library. Our library deals with large linesystems solvers because they are a common prabléme fields of
science and engineering. Direct methods for computihe solution of such systems can be very exgedsie to high
memory requirements and computational cost. Ariefii alternative are iterative methods which cotepuonly an
approximation of the solution. In this paper we gmet an implementation of a library that uses arigylmodel of
computation using MPI and CUDA implementing botlectiand iterative linear systems solvers. Ourdiyrimplements
LU and Cholesky factorization based solvers andesainthe non-stationary iterative methods using Miel/CUDA
combination. We compared the performance of our/@IBDA implementation with classic programs writterbe run on
a single CPU.

Keywords: parallel algorithms, linear algebra, CUDA, MPI, GPU computing.

1. Introduction

From physics and engineering to macroeconometrigetitay, solving large linear systems of equatians i
a common problem. Such problems rely on high pevémce computing. One of the parallel programming
paradigms is the message passing with its impleatientusing the MPI library [21]. About ten yeargoa
MPI clusters were the first choice for many scigntapplications but nowadays GPUs are used for
performing general computations. In 2003 [10] pethbut a new approach to obtain a high megaflap toat
the applications when he started to use GPUs (gralpprocessing unit) for non-graphics applications
Current Graphics Processing Units contain high guerdnce many-core processors capable of very high
FLOP rates and data throughput being truly genaugbose parallel processors. Since the first idddark
Harris, many applications were ported to use th& &P compute intensive parts and they obtain sppsdf
few orders of magnitude comparing to equivalentiém@ntations written for normal CPUs.

At this moment, there are several models for GPuhmding: CUDA (Compute Unified Device
Architecture) developed by NVIDIA [15], Stream déyeed by AMD [1] and a new emerging standard,
OpenCL [12] that tries to unify different GPU gemlecomputing API implementations providing a gehera
framework for software development across hetereges platforms consisting of both CPUs and GPUs.

Combining the message passing based clusters mettveary high FLOP rates of GPUs is a relatively
recent idea [8]. We developed a hybrid linear algelibrary that uses both MPI for spreading the
computations among the computing nodes in a clastdrCUDA for performing the local computations on
each node of the cluster. Thus, our library explaicomplex memory hierarchy: a distributed menaongng
the computing nodes in the cluster and a sharedamyeom each node which is, in fact, the device nrgnod
the local GPUs.

OCorresponding author: bogdanoancea@univnt.ro

6 Computational Methods in Social Sciences

2. Serial iterativeand direct methods

Stationary iterative methods such as Jacobi and$s8aidel are well known and there are many tekthoo
that describe these methods [9]. An alternativéhto stationary methods are Krylov techniques whish
information that changes from iteration to iteratidOperations involved in Krylov methods are inner
products, saxpy and matrix-vector products that thascomplexity of O, making them computational
attractive for large systems of equations. Ondefrhost used Krylov’ method is the conjugate gratdi€G)

[9] which solves SPD systems and in exact arithorgities the solution for at mastiterations.

A relatively new method for general non symmetimer systems is the Generalized Minimal Residuals
(GMRES) introduced by [20]. GMRES uses a Gram-Sdhrorthogonalization process and requires the
storage and computation of an increasing amouirtfofmation at each iteration. These difficultieancbe
alleviated by restarting the computations afteixad number of iterations. The intermediate resatts then
used as a new initial point.

Another non-stationary method is the BiConjugateadiant (BiCG). BiCG generates two mutually
orthogonal sequences of residual vectors and Asgdhal sequences of direction vectors. The updates
residuals and for the direction vectors are simdahose of the CG method, but are performed usypstem’s
matrix and its transpose. In our library we've immpented a version of BiCG called BICGSTAB.

The alternative to the iterative methods for sajvénlinear systemx =b is thedirect methodhat consists
in two steps:

» The first step consists in matrix factorizatioh=LU whereL is a lower triangular matrix with 1s on the main
diagonal andU is an upper triangular matrix. In the case of SRddrices, we haved = LL" .
* In the second step we have to solve two lineaesgystwith triangular matricesy=b andUx=y.

The standard LU factorization algorithm with pdrtivoting is given in [9]. The computational

complexity of this algorithm i£(2n3/2). After computation of the matrix factors L and & Wwave to solve
two triangular systems.y =b andUx=y These systems are solved using forward and backsudnstitution

with a computational complexity ota(nz), the most important computational step being thetrim
factorization.

Computers with memory hierarchies are used moreiexftly if the matrix factorization uses BLAS Ldve
3 operations [7] besides level 1 and level 2 opmmat[13], [6]. It is well-known, level 3 BLAS opations
have a better efficiency than level 1 or level Zmpions. The standard way to change a level 2 BLAS
operations into a level 3 BLAS operation is delayedating. In the case of the LU factorization aildpn we
will replace k rank 1 updates with a single rankgkdate resulting a block algorithm. A detailed diggion of
the block LU factorization algorithm is given in7[iL

3. Theimplementation of paralld algorithms

The serial algorithms presented here may not alviseysppropriate for very large matrices, parallel
versions being more suitable for such matrices.

Software packages for solving linear systems haavk a powerful evolution. A software package for
linear algebra problems that emerged as a de-faatmwlard was LAPACK [2] which was adapted for galal
computation resulting ScaLAPACK [4] library. Manyher software packages for parallel computatiorehav
been developed so far: PETSc [3] PARPACK [14], Subg23].

Since the introduction of GPU general computafitameworks (CUDA, and Stream) many numerical
libraries were ported to them: CUBLAS [16] is a CADnplementation of the BLAS library, MAGMA [11]
is a collection of next generation linear algebrBUGaccelerated libraries for heterogeneous GPUdbase
architectures, CULA [5] is a library that providas accelerated implementation of the LAPACK and BLA
libraries for both dense and sparse linear algebra.

Previously [17] and [18] we presented a libraryt thaplements parallel algorithms for linear systems
solving - PLSS (Parallel Linear System Solver). PLSS library was designed with an easy to usefate

CMSS - VOL. |, ISSUE 2/2013

Bogdan Oancea, Tudorel Andrei 7

almost identical with the serial algorithms’ intecé. Now, we improved this library combining the
distributed computing used in PLSS with CUDA acraied local computations. We named the new library
CUPLSS.

The library has a very simple interface that makessoftware developing process very easy bechese t
parallelism is hidden from the user. This goal whtined by means encapsulation of data and disiib
and communication in opaque objects that hide tmeptexity from the user. Our library was developed
and we used MPICH implementation of the MPI for t@mmunication between processors. The local
computations on each MPI node is further accelérasing CUDA, so that each local call of a compatet
intensive kernel is sent to be executed on the @uce. The simplified structure of the computing
architecture used for our tests in presented inreig.

MPI communication between nodes

CPU CPU CPU
| |
| cuoanrt || || cupaar |
| |
GPU GPU GPU

Fig. 1. MPI — CUDA hybrid architecture

MPI is used to facilitate the communication betweedes and exploit coarse grained parallelism ef th
applications and CUDA accelerates local computatimm each node exploiting the fine grained paisitel
In our experiments we used a cluster of 16 workstateach having an Intel QuadCore Q6600 processbr
NVIDIA GeForce GTX 280 GPU. The communication bedwaenodes is achieved using a standard Gigabit
LAN.

Our library is structured on four levels, as we saa in Figure 2.

Application Program Interface — provides routines|f API level
parallel linear system solvil
Object manipulation routines Data distribution and

encapsulation level

Data distribution level

Interface CUPLSS-MPI InterfaceCUPLS¢- Architecture independel
CUBLAS level
Native MPI library
Native CUBLAS library Architecture dependent level
CUDA runtime

Fig. 2. CUPLSS structure

The first level contains the CUDA runtime, CUBLABIPI and C libraries which all are architecture
dependent. The second level provides the architegtdependence, which implements the interfacedest
the first level and the rest of the CUPLSS packdde next level implements the data distributiondaio
concentrating the details regarding distributiowedtors and matrices on processors.

The top level of the CUPLSS library is, the apgima programming interface. CUPLSS API provides a
number of routines that implements parallel BLA®i@tions and parallel linear system solving openrati
direct methods based &t and Cholesky factorization and nonstationary fteeamethods GMRES, BiCG,
BIiCGSTAB. The CUPLSS library uses a logical bidimienal mesh of processors (computing nodes).
Wherever we used CUDA accelerated local operatiomgieneral flow of the computations was [19]:

CMSS - VOL. |, ISSUE 2/2013

8 Computational Methods in Social Sciences

Step 1 : Allocate memory for matrices and vectors intilest memory;
Step 2 : Initialize matrices and vectors in the host mgmo
Step 3: Allocate memory for matrices and vectors in theicke memory;
Step 4 :Copy matrices from host memory to device memory;
Step 5: Define the device grid layout:
* Number of blocks
 Threads per block
« Step 6 : Execute the kernel on the device;
« Step 7: Copy back the results from device memory to hastory;
« Step 8: Memory clean up.

4. Performancetests

We've tested our library for both single precisiamd double precision floating point numbers. For ou
tests we used a cluster of workstations connedtealigh a 1000Mb Ethernet local network, each siatio
having 4GB of main memory. The CUPLSS package theeMPICH implementation of the MPI library and,
for the local BLAS operations, uses the CUBLASdllyr that provides a high FLOP rate. Each node én th
cluster is a computer with Intel Core2 Quad Q66@8cgssor running at 2.4 Ghz, 4 GB of RAM and a
NVIDIA GeForce GTX 280 graphics processing unit (§Rvith 240 cores running at 1296 MHz, 1GB of
video memory and 141.7 GB/sec memory bandwidth.ofjezating system used was Windows Vista 64 bit.

We have tested the CUPLSS package for both iteratind direct methods, for 1, 2, 4, 8, and 16 comgut
nodes. The dimension of the matrix was maintaireedf 60000 rows and columns. Figure 3 shows the
speedup of the parallel algorithms for the caserwitezative methods are used to solve the modefigock 4
shows the speedup in the case of direct methods sppeedup is computed comparing the parallel dhgori
with a serial version the uses one CPU. Both speedue computed for single precision floating point
numbers.

We wanted to evaluate how much CUDA acceleratedl leomputation contributes to the overall
performance. To achieve this goal we replacedhaldalls to CUBLAS or other CUDA computations for
local computations with calls to a serial BLAS implentation — ATLAS [22] and calculated again the
speedups. As figures 3 and 4 show, CUDA accelellatsd computations improves the overall perforneanc
but this increase in the speedup is not very hidgite main reason for this is the GPU memory conbentin
GPU device and the communication overhead incuyeithe MPI processes that acts as synchronizingt$oi
between CUDA calls. The main advantage of using kil CUDA hybrid model is that it allows solving
very large systems which could not fit in the GPl@mory of one computer. Although a pure CUDA
implementation of linear systems solvers shows gl speedups, very large matrices do not fihnenGPU
memory so that distributing the matrices and usifty message passing model is an advantage thabtthen
neglected.

CMSS - VOL. |, ISSUE 2/2013

Bogdan Oancea, Tudorel Andrei

—+—GMRES (with CUBLAS) ——BiCGSTAB (with CUBLAS)
= GMRES (without CUBLAS) =====BiCGSTAB (without CUBLAS)

16

; /o
.)/
///

N\
\

16

Number of computing nodes

Fig. 3. The speedup for parallel versions of the itemtalgorithms

—o— LU (with CUBLAS) =fi=LU (without CUBLAS)

14

.
Pl

10

g 3
O
(1]
8 /(
7 ® //i/
4
2
0\ T

1 7 4 8 16
Number of computing nodes

Fig. 4. The speedup for parallel versions of the LU feizadion

CMSS - VOL. |, ISSUE 2/2013

10 Computational Methods in Social Sciences

5. Conclusions

We developed a hybrid MPI-CUDA library CUPLSS, tl@iplements non-stationary iterative methods
(GMRES, BICGSTAB, BICG) and direct methods for $otylinear systems. We've made performance tests
for our library in a network with 16 computing na@dend we obtained a good speedup. The speedughisrhi
for the methods based on matrix factorization caegpavith the iterative algorithms. We also testeavh
much CUDA accelerated local computation contributeshe overall performance by replacing all CUDA
accelerated code with a serial code. The resultwsithat CUDA accelerated local computations imprthe
overall performance but the increase in performaaceot very high mainly because of the GPU memory
contention and MPI communication overhead.

In the future we intend to extend our library amd gort it to OpenCL which will give hardware
independence because CUDA is linked with NVIDIA ideg.

References

[1] AMD: “ATI Stream Computing - Technical Overview&MD, Tech. Rep., 2008.

[2] Anderson, E., Bai, Z., Demmel, J., Dongarra, J.,@az, J., Greenbaum, A., Hammarling, S., Mckenmey,Ostrouchov, S., Sorensen, D.:
“LAPACK Users’s Guide”, SIAM, Philadelphia, 1992.

[3] Balay, S., Buschelman, K., Eijkhout, V., Gropp, V., Kaushik,D., Knepley, M.G., Mcinnes, L. C., SmitB. F., Zhang, H.“PETSc Users
Manual”, Technical Report, ANL-95/11 - Revision 2.1.5, Ange National Laboratory, 2004.

[4] Choi, J., Dongarra, J., Pozo, R., Walker, D.¥8caLAPACK: a scalable linear algebra library foistributed memory concurrent computers.”
Proceedings of the fourth Symposium on the FrantiéMassively Parallel Computers, IEEE Comput.. Boess, 120-127, 1992.

[5] CULA library available at http://www.culatools.co2012.

[6] Dongarra, J., Du Croz, J., Hammarling, S., Hangbon’An extended set of FORTRAN basic linear algebriapsograms”, ACM Transactions
on Mathematical Software, 14 (1), 1-17, 1988.

[7] Dongarra, J., Du Croz, J., Hammarling, S., Duff/A set of level 3 basic linear Algebra subprogram&CM Transactions on Mathematical
Software, 16 (1), 1-17, 1990.

[8] Fengshun, L., Jungiang, S., Fukang, Y., Xiaogian, “Berformance evaluation of hybrid programming patte for large CPU/GPU
heterogeneous clustersComputer Physics Communications, 183 (6), 1172t12012.

[9] Golub, G. H., Van Loan, C. F:Matrix Computations’, Johns Hopkins Series in Mathematical Sciences, Jitns Hopkins University Press,
1996.

[10] Harris, M. J., Baxter Ill, W. V., Scheuermann, [astra, A.:"Simulation of Cloud Dynamics on Graphics HardwarBtoceedings of the
IGGRAPH/Eurographics Workshop on Graphics Hardw&2-101, 2003.

[11] Horton, M., Tomov, S.Dongarra, J.:"A Class of Hybrid LAPACK Algorithms for Multicorend GPU Architectures" Symposium for
Application Accelerators in High Performance Conpgif SAAHPC'11), Knoxville, TN, 2011.

[12] Khronos OpenCL Working GroufiThe OpenCL Specification - Version 1.0The Khronos Group, Tech. Rep., 2009.

[13] Lawson, C. L., Hanson, R. J., Kincaid, D. R., Krpgh T.: “Basic linear algebra subprograms for Fortran usdgeACM Transactions on
Mathematical Software, 5 (3), 308-323, 1979.

[14] Maschhoff, K. J., Sorensen, D. €A portable implementation of ARPACK for Distribdt&emory Parallel ArchitecturesProceedings of the
Copper Mountain Conference on Iterative Method9619

[15] NVIDIA: “CUDA C Programming Guide, Version 4.02011.

[16] NVIDIA, “ CUDA — CUBLAS Library 2007.

[17] Oancea, B., Zota, R‘The design and implementation of a dense parditelar system solver’Proceedings of the 1st Balkan Conference in
Informatics, Thessaloniki, Greece, 426-439, 2003.

[18] Oancea, B, Andrei, T., Rosca, lon Gh., lacob, A""Parallel algorithms for large scale econometric dets’, 1st World Conference on
Information Technology, Procedia Computer Scient#, 3, 479-483, 2011.

[19] Oancea, B., Andrei, T., Dragoescu, R.MImproving the performance of the linear systemévexs using CUDA; Proceedings of the
“Challenges for the Knowledge Society”, pp. 203@202012.

[20] Ssaad, Y.‘lIterative Methods for Sparse Linear SystemBWS Publishing Company, 1996.

[21] Snir, M., Otto, S. W., Huss-Lederman, S., Walker\D, Dongarra, J.:MPI: the Complete ReferenceMIT Press, 1996.

[22] whaley, R. C., Petitet, A., Dongarra, “Automated Empirical Optimization of Software am tATLAS project’Parallel Computing, 27 (1-2),
3-35, 2001.

[23] Xiaoye, S. Li, Demmel, J. WA Scalable Distributed-Memory Sparse Direct Solf@r Unsymmetric Linear Systems®CM Transactions on
Mathematical Software, 29 (2), 110-140, 2003.

CMSS - VOL. |, ISSUE 2/2013

